129 research outputs found

    Targeting neuroinflammation in Alzheimerā€™s disease

    Get PDF
    Almost 47 million people suffer from dementia worldwide, with an estimated new case diagnosed every 3.2 seconds. Alzheimerā€™s disease (AD) accounts for approximately 60%ā€“80% of all dementia cases. Given this evidence, it is clear dementia represents one of the greatest global public health challenges. Currently used drugs alleviate the symptoms of AD but do not treat the underlying causes of dementia. Hence, a worldwide quest is under way to find new treatments to stop, slow, or even prevent AD. Besides the classic targets of the oldest therapies, represented by cholinergic and glutamatergic systems, Ī²-amyloid (AĪ²) plaques, and tau tangles, new therapeutic approaches have other targets. One of the newest and most promising strategies is the control of reactive gliosis, a multicellular response to brain injury. This phenomenon occurs as a consequence of a persistent glial activation, which leads to cellular dysfunctions and neuroinflammation. Reactive gliosis is now considered a key abnormality in the AD brain. It has been demonstrated that reactive astrocytes surround both AĪ² plaques and tau tangles. In this condition, glial cells lose some of their homeostatic functions and acquire a proinflammatory phenotype amplifying neuronal damage. So, molecules that are able to restore their physiological functions and control the neuroinflammatory process offer new therapeutic opportunities for this devastating disease. In this review, we describe the role of neuroinflammation in the AD pathogenesis and progression and then provide an overview of the recent research with the aim of developing new therapies to treat this disorder

    Does neuroinflammation turn on the flame in Alzheimer's disease? Focus on astrocytes

    Get PDF
    Data from animal models and Alzheimer's disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies

    Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimerā€™s disease: in vitro and in vivo evidence

    Get PDF
    Alzheimerā€™s disease (AD) is a neurodegenerative disorder responsible for the majority of dementia cases in elderly people. It is widely accepted that the main hallmarks of AD are not only senile plaques and neurofibrillary tangles but also reactive astrogliosis, which often precedes detrimental deposits and neuronal atrophy. Such phenomenon facilitates the regeneration of neural networks; however, under some circumstances, like in AD, reactive astrogliosis is detrimental, depriving neurons of the homeostatic support, thus contributing to neuronal loss. We investigated the presence of reactive astrogliosis in 3ƗTg-AD mice and the effects of palmitoylethanolamide (PEA), a well-documented anti-inflammatory molecule, by in vitro and in vivo studies. In vitro results revealed a basal reactive state in primary cortical 3ƗTg-AD-derived astrocytes and the ability of PEA to counteract such phenomenon and improve viability of 3ƗTg-AD-derived neurons. In vivo observations, performed using ultramicronized- (um-) PEA, a formulation endowed with best bioavailability, confirmed the efficacy of this compound. Moreover, the schedule of treatment, mimicking the clinic use (chronic daily administration), revealed its beneficial pharmacological properties in dampening reactive astrogliosis and promoting the glial neurosupportive function. Collectively, our results encourage further investigation on PEA effects, suggesting it as an alternative or adjunct treatment approach for innovative AD therapy

    S100B and APP Promote a Gliocentric Shift and Impaired Neurogenesis in Down Syndrome Neural Progenitors

    Get PDF
    Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production

    Differential Cannabinoid Receptor Expression during Reactive Gliosis: a Possible Implication for a Nonpsychotropic Neuroprotection

    Get PDF
    Activated microglia and astrocytes produce a large number of inflammatory and neurotoxic substances in various brain pathologies, above all during neurodegenerative disorders. In the search for new neuroprotective compounds, interest has turned to marijuana derivatives, since in several in vitro, in vivo, and clinical studies, they have shown a great ability to control neuroinflammation

    genomic and functional profiling of human down syndrome neural progenitors implicates s100b and aquaporin 4 in cell injury

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 and is characterized by mental retardation, seizures and premature Alzheimer's disease. To examine neuropathological mechanisms giving rise to this disorder, we generated multiple human DS neural progenitor cell (NPC) lines from the 19-21 week frontal cortex and characterized their genomic and functional properties. Microarray profiling of DS progenitors indicated that increased levels of gene expression were not limited to chromosome 21, suggesting that increased expression of genes on chromosome 21 altered transcriptional regulation of a subset of genes throughout the entire genome. Moreover, many transcriptionally dysregulated genes were involved in cell death and oxidative stress. Network analyses suggested that upregulated expression of chromosome 21 genes such as S100B and amyloid precursor protein activated the stress response kinase pathways, and furthermore, could be linked to upregulation of the water channel aquaporin 4 (AQP4). We further demonstrate in DS NPCs that S100B is constitutively overexpressed, that overexpression leads to increased reactive oxygen species (ROS) formation and activation of stress response kinases, and that activation of this pathway results in compensatory AQP4 expression. In addition, AQP4 expression could be induced by direct exposure to ROS, and siRNA inhibition of AQP4 resulted in elevated levels of ROS following S100B exposure. Finally, elevated levels of S100B-induced ROS and loss of AQP4 expression led to increased programmed cell death. These findings suggest that dysregulation of chromosome 21 genes in DS neural progenitors leads to increased ROS and thereby alters transcriptional regulation of cytoprotective, non-chromosome 21 genes in response to ongoing cellular insults

    Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-Ī±

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to cytotoxic mechanisms directly impacting neurons, Ī²-amyloid (AĪ²)-induced glial activation also promotes release of proinflammatory molecules that may self-perpetuate reactive gliosis and damage neighbouring neurons, thus amplifying neuropathological lesions occurring in Alzheimer's disease (AD). Palmitoylethanolamide (PEA) has been studied extensively for its anti-inflammatory, analgesic, antiepileptic and neuroprotective effects. PEA is a lipid messenger isolated from mammalian and vegetable tissues that mimics several endocannabinoid-driven actions, even though it does not bind to cannabinoid receptors. Some of its pharmacological properties are considered to be dependent on the expression of peroxisome proliferator-activated receptors-Ī± (PPARĪ±).</p> <p>Findings</p> <p>In the present study, we evaluated the effect of PEA on astrocyte activation and neuronal loss in models of AĪ² neurotoxicity. To this purpose, primary rat mixed neuroglial co-cultures and organotypic hippocampal slices were challenged with AĪ²<sub>1-42 </sub>and treated with PEA in the presence or absence of MK886 or GW9662, which are selective PPARĪ± and PPARĪ³ antagonists, respectively. The results indicate that PEA is able to blunt AĪ²-induced astrocyte activation and, subsequently, to improve neuronal survival through selective PPARĪ± activation. The data from organotypic cultures confirm that PEA anti-inflammatory properties implicate PPARĪ± mediation and reveal that the reduction of reactive gliosis subsequently induces a marked rebound neuroprotective effect on neurons.</p> <p>Conclusions</p> <p>In line with our previous observations, the results of this study show that PEA treatment results in decreased numbers of infiltrating astrocytes during AĪ² challenge, resulting in significant neuroprotection. PEA could thus represent a promising pharmacological tool because it is able to reduce AĪ²-evoked neuroinflammation and attenuate its neurodegenerative consequences.</p

    Cannabidiol Reduces AĪ²-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARĪ³ Involvement

    Get PDF
    Peroxisome proliferator-activated receptor-Ī³ (PPARĪ³) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARĪ³, which has been recently indicated as its putative binding site. CBD actions on Ī²-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARĪ³ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARĪ³, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported
    • ā€¦
    corecore